Jump to content
  • Sky
  • Blueberry
  • Slate
  • Blackcurrant
  • Watermelon
  • Strawberry
  • Orange
  • Banana
  • Apple
  • Emerald
  • Chocolate
  • Charcoal

jeanpierrem

Membre
  • Content count

    3,663
  • Donations

    30.00 EUR 
  • Joined

  • Last visited

  • Days Won

    268

Posts posted by jeanpierrem


  1. Bonjour

     

    Perso Treno ca me gene pas ta loco est superbe comme j'en parlé avec Olivier

    mais pour ceux qui veulent

    Tout est expliqué là concernant les eclisses

    RailNetwork Sounds

    Bogie Sounds

    The Bogie Audio Control (Generic Audio Control) is referenced in the Engine or Wagon Blueprint and allows you to add rail joints and flanging sounds.
     
    So to add Rail joint sounds to an engine or wagon. Use the controller JointCount as shown in the image below. The actual distance between joints is set up in the TrackBedRumble blueprint.
     
    For flanging sounds use the Curvature controller.
     
    The value Curvature in the Controller name parameter returns the value of the current radius of the track you are on. In the form 1/radius. So a track radius of 200 metres is returned as 0.005. Meaning that a curvature of zero is an infinite radius, or in other words straight track. You can then use a modifier chain which is based on the consists AbsoluteSpeed and Curvature to control when the flange sound actually plays.

    Coupling Sounds

    The Coupling Audio Control (Generic Audio Control) is referenced in the Engine or Wagon Blueprint and allows you to add coupling or decoupling sounds.
     
    When CouplingState is '1' it is coupled, when it is set to '-1' it is decoupled. So you can use one-shots as above to trigger Couple and Decouple sounds.

    TrackBedRumble

    Here is an example of a typical TrackBedRumble or Track Sound Blueprint, in this example for a rumble sound you get when you pass over a bridge:
    fig127.PNG
     
    This Blueprint mainly houses references to specific audio controls which are described in following sections, Rumble, Tingle, Junction, Reverb and Derailment.
     
    Ideally, you need to create a new Track Sound Blueprint for each unique track type in the game. The minimum we suggest you need is one for external track and one for tunnel track.
     
    The Distance between Joints (metres) parameter and the Junction clatter distance parameter determine how often and when the joint sounds specified in the Bogies audio control are triggered. Therefore, on a non-welded continuous type rail, you should use a Distance between Joints of zero (no rail joints ever heard) or perhaps a very large value if there are the very occasional joints in the continuous rail (say every 10km). On an older steam route with welded rail, you should use a Distance between Joints value specific to that route. The image above shows a joint distance of 30.
     
    The Category parameter should be set to Exclude from browser list as you will never want to place this blueprint directly in the editor.
     
    The Colour section determines how the particular rumble type will look in the editor. To lay down different rumble types on a piece of track you need to:
    1. Open Editor -> Track -> Select tool
    2. Select a piece of track.
    3. Open the right-hand panel and select the relevant rumble type.
    The Track Sound Blueprints must be referenced in the Track Blueprint for them to appear in this list. It is also very important that the Default Rumble Blueprint is set in the Track Blueprint before laying ANY track in the editor. Otherwise, you will need to set rumbles for 90% of the laid track manually, which is a long task.
     
    Here is a typical section of a Rumble Audio Control (Generic Audio Control):
     
    fig128.PNG
     
    The positioning of the rumble sound is handled automatically by the sound engine. The position of the track rumble is snapped to the track, within the length of the player consist and at the nearest point to the 'screen'.
     
    As you can see above, Controlled Loops are the order of the day here. AbsoluteSpeed is the controller which you should use to control the volume of the rumble based upon speed, via a curve and modifier chain. The recommended start value is 0.05. This means the rumble will not play whilst the train is stationary and will negate any slight 'flutter' of the AbsoluteSpeed value whilst the train is stationary.
     
    Tingle is used to control two effects in Train Simulator, although a whole range of potential effects is possible.
     
    The tingle effect is the sound of the rail vibrating as a train is approaching. This is controlled again via the AbsoluteSpeed controller but also via the controller DistanceToConsist which is the distance to the nearest point of the consist in question.
     
    A sound of rushing air as a train passes is the second sound. It is essentially identical to the DistanceToConsist controller except when in use on a player consist it will return a value of zero when in any camera mode where you are attached to the consist.

    Derailing

    The Derailing Audio control is a Generic Audio Control that begins working when the consist derails. At this point, the AbsoluteSpeed value of the consist can be used to trigger a grinding or rumble loop of the train moving across the ground. The DerailImpactCount controller will increment everytime rolling stock hits another object, it is also automatically incremented by 1 at the point the train derails allowing for immediate impact effects.

    Junctions

    Junction sounds can be added using the SwitchingProgress controller which changes smoothly between 0-1.

    Reverb

    Reverb effect blueprints are referenced in the Track sound blueprint. This effect requires an EAX enabled soundcard.

    Platform Sounds

    Platforms work in a similar way to road sounds. If you attach a generic blueprint as a child to a platform blueprint you can use the controller NumberOfPeopleOnPlatform to control the level of an overall ambience loop or also one-shots such as coughs, footsteps, mobile phone rings etc.
     
    Bonne lecture
    Jean Pierre
     
     
    • Like 2

  2. Bonjour Erakis

    Pour répondre a ta question voici un petit schéma 

    BMTDM.thumb.jpg.71c8a8d336352f0ef4256006276860fe.jpg

    Les marqueurs de quai ne doivent pas engager le sémaphore  de plus comme sur la ligne Nice Tende les trains sont reçus sur voie de gauche 

    Ce système te permet d'avoir des trains AI en scénario standard sans risque de face a face et te permettra en parcours libre de passer par n'importe

    quelle voie

    Voici 2 croisements en scénario standard sur la TdM

    Un en gare de Peille l'AGC arrive de L'Escaréne

    Je conduit l'AGC en attente devant le carré

     

    5e77a58a72fca_Screenshot_SNCFTdM_43.79196-7.37990_12-16-31.thumb.jpg.1543b0744dacbeb316add9bb47faa2bb.jpg

    Un en gare de l'Escaréne

    J'ai attendu l'arrivée du train travaux

    5e77a55379292_Screenshot_SNCFTdM_43.84058-7.35195_12-28-40.thumb.jpg.014299f11f46031ab8d8a24fa3d8b266.jpg

    Bon jeu

    Jean Pierre

    • Like 1
    • Thanks 1

  3. Bonjour Erakis

    Pas d'astuce avec le script mais article démerde

    J'avais été confronté a un problème de voie unique sur la ligne du Train des Merveilles lors de la pose de la signalisation ce n’était pas tout simple surtout avec les trains

    en AI . 

    Perso j'ai résolu le problème et cela fonctionne très bien

    Par contre il faut placer le marqueur de quai avant le sémaphore et tirer le lien du carré et du CV jusqu’à la gare suivante et si il y a 2 voies ne tirer qu'un lien  sur une des 2 voie afin de permettre les croisements .

    cartdm.thumb.jpg.c9d5f2ecd80b3196f4d69d4ca65f34cd.jpg

    Jean Pierre

    PS si ça t’intéresse je peux te détailler le truc

     

    • Like 1

  4. Bonjour

    Il y a 15 heures, rabby62 a dit :

    on devait être sur du 750 volts , pas plus

    Anni di progettazione 1912
    Anni di costruzione 1914
    Anni di esercizio 1914-1963
    Quantità prodotta 16
    Costruttore Società Italiana Westinghouse (vedi il testo)
    Lunghezza 11 008 mm
    Larghezza 2 900 mm
    Altezza 4 265 mm senza trolley[2]
    Massa in servizio 73 t
    Massa aderente 51 t
    Rodiggio 1'C1'
    Diametro ruote motrici 1 630 mm[3]
    Potenza oraria 2 000 kW[4]
    Potenza continuativa 1 750 kW[4]
    Sforzo trazione massimo 84 kN[5]
    Velocità massima omologata 100 km/h (vedi il testo)
    Alimentazione

    3,6 kV CA trifase 16⅔ Hz

    • Thanks 1

  5. Bonjour

    Nous avons reçu l'autorisation pour la conversion de ce modèle issu de MSTS

    Il y a plus qu'a :D

    Mais c'est un long travail et nous avons également une vie a coté donc patience:rolleyes:

    manque plus qu'un peut de motivation et du temps disponible

    BB27000.thumb.jpg.6460cfb186b9a9383d245af66eee44c0.jpg

    Screenshot_Perpignan-Cerbere_42.52447-2.82372_15-00-44.thumb.jpg.ff9e7add6df61a3204288600bfb1c7f0.jpg

     

    Jean Pierre

    • Like 13

  6. Oui uniquement  les rames réversibles 

    Les prises sur la BB 22399 sont des prises de mesures 

    JP

    Tiré de cet excellent site

    https://leblogdejobiwan.blogspot.com/2014/09/

    Restons dans la filière Infra avec cette locomotive bi-courant, la BB 22399, l'une des rares locomotives de sa série à être équipée de la TVM et apte à 200 km/h, sans oublier la possibilité de lui brancher des voitures de mesures.

    BB 22399 / Hazebrouck
×